OF UNANI AND INTEGRATIVE MEDICINE

E-ISSN: 2616-4558 P-ISSN: 2616-454X www.unanijournal.com IJUIM 2025; 9(3): 235-239 Impact Factor (RJIF): 6.59 Peer Reviewed Journal Received: 06-10-2025

Accepted: 08-11-2025

Dr. Mohammed Wasim Ahmed Regional Research Institute of Unani Medicine, New Delhi, Delhi, India

Dr. Reesha Ahmed Regional Research Institute of Unani Medicine, Aligarh, Uttar Pradesh, India

Dr. Safder Husain Regional Research Institute of Unani Medicine, New Delhi, Delhi, India

Dr. Anwar Jamal Regional Research Institute of Unani Medicine, New Delhi, Delhi, India

Dr. Zaki Ahmad Siddiqui Regional Research Institute of Unani Medicine, New Delhi, Delhi, India

Hina Rehman

Regional Research Institute of Unani Medicine, New Delhi, Delhi, India Syzygium cumini L. (Jamun): A comprehensive review of its traditional and modern therapeutic relevance in the context of Unani medicine

Mohammed Wasim Ahmed, Reesha Ahmed, Safder Husain, Anwar Jamal, Zaki Ahmad Siddiqui and Hina Rehman

DOI: https://www.doi.org/10.33545/2616454X.2025.v9.i3d.404

Abstract

Syzygium cumini from family myrtaceae, is a multipurpose medicinal plant. The fruit, seed, bark and leaves of this plant possess medicinal properties like Qābiz (astringent), Musaffī-e-Dam (blood-purifying), Muqawwi-e-Meda (stomachic) and Mufattih-e-Sudad (deobstruent) etc.

In classical *Unani* literature all parts of this tree are used to treat a various diseases, especially the seeds in diabetes mellitus. It has been reported that it possess antioxidant, anti-allergenic, radio protective, anti-inflammatory, neuropsycho pharmacological and antimicrobial activities.

The present review has been prepared to compile the existing information about its botany, traditional uses, phytochemical constituents and pharmacological activities of *Syzygium cumini*.

Keywords: Jamun, Syzygium cumini, Unani medicine, Anti-diabetic and disease

Introduction

Jamun (*Syzygium cumini L.* Skeels) is an evergreen tree native to the Indian subcontinent and naturalised across tropical Asia ^[1]. In *Unani* compendia including *Makhzan al-Adwiyah* (Najmul Ghani Khan 1920), *Tibb-e-Akbar* (Akbar Arzani 1772) and *Kitāb al-Mansūrī* (Zakharia al-Rāzī 925 CE) Jamun is characterised as a potent *Qābiz* and *Muqawwi-e-Meda* agent, correcting excessive *Rutūbat* (*e-moisture*) and *Harārat* (*e heat*) in the humoral system. Contemporary studies validate these empirical observations. Phenolics such as ellagic acid and jambosine exhibit antidiabetic and antioxidant activity ^[2, 3]. while clinical evidence confirms its glucose-lowering effects in type 2 diabetes ^[4, 5]. This review synthesises classical wisdom and modern research to rationalise Jamun's therapeutic relevance within the *Unani* epistemology.

2 Classical Unani Perspective

2.1 Names and Identification

Arabic	Jamun / Zayzafūn	
Persian	Jaman	
Hindi	Jamun / Jambool	
French	Jamblon	
German	Jambulbaum	
English	Black plum	
Sanskrit	Jambu	
Urdu	Jamun	
Marathi	Jambul	
Kannada	Narale	
Telugu	Neredu	
Malayalam	Njaval	
Tamil	Nagai ^[6, 7]	

Corresponding Author:
Dr. Reesha Ahmed
Regional Research Institute of
Unani Medicine, Aligarh,
Uttar Pradesh, India

Taxonomic classification				
Kingdom	Plantae planta, plantes, plants, vegetal			
Subkingdom	Tracheobionta			
Superdivision	Spermatophyta			
Division	Magnoliophyta			
Class	Magnoliopsida			
Order	Myrtales			
Family	Myrtaceae			
Genus	Syzygium			
Species	Syzygium cumini L^7			

2.2 Mizāj (Temperament)

Cold and dry (Bārid wa Yābis) in second degree [8]. Such

temperament counteracts excess *Dam* and *Balgham*, producing astringent and absorptive actions ^[9].

2.3 Afa'l (Actions)

Qābiz (Astringent), Musaffī-e-Dam (Blood Purifier), Dāfī -i-Daḥan (Antiseptic), Munajjif (Desiccant) and Mufattiḥ Sudad (Deobstruent) [10, 11].

2.4 Istemālāt (Therapeutic Uses)

Jamun is recommended for *Ziābetus Shakarī*, *Ishāl*, *Bawāsir*, *Sufrā* (jaundice), *Waram-e-Kabid* (hepatitis), and *Qulanj* (colic) [12, 13]. Also in the form of *Safoof-e-Jamun* and *Sharbat-e-Jamun* [14].

Table 1: Phytochemicals present in the jamun plant

Sr. No.	Plant part	Chemicals present		
1.	Seeds	Ambosine, gallic acid, ellagic acid, corilagin, 3,6-hexahydroxy diphenoylglucose, 1-galloylglucose, 3-galloylglucose, quercetin, β-sitoterol, 4,6 hexahydroxydiphenoylglucose [15, 16].		
2.	Stem bark	ark Friedelin, friedelan-3-α-ol, betulinic acid, β-sitosterol, kaempferol, β-sitosterol-Dglucoside, gallic acid, ellagic a gallotannin and ellagitannin and myricetine [15, 16]		
3.	Flowers	Oleanolic acid, ellagic acids, isoquercetin, quercetin, kampferol and myricetin [15]		
4.	Fruit pulp	Anthocyanins, delphinidin, petunidin, malvidin-diglucosides [15, 17]		
5.	β-sitosterol, betulinic acid, mycaminose, crategolic (maslinic) acid, n-hepatcosane, n-nonacosane, n hentriacontane, noctacosanol, n-triacontanol, n-dotricontanol, quercetin, myricetin, myricetin and the fla glycosides myricetin 3-O-(4"-acetyl)-α Lrhamnopyranosides [15, 17]			
6.	α-terpeneol, myrtenol, eucaryone, muurolol, α-myrtenal, 1, 8-cineole, geranyl acetone, α-cadinol an			

3. Pharmacognostic Identity

A medium-sized evergreen tree (12-15 m) with grey bark and glossy opposite leaves bearing oil glands [19]. Microscopy reveals parenchymatous cortex with calcium oxalate crystals and tannin cells.

Physicochemical standards (*UPI*, **2008**): Total ash 4.3%, acid-insoluble ash 0.5%, alcohol-soluble extractive 16%. TLC shows gallic acid (Rf 0.33) and ellagic acid (Rf 0.41) [20]

Jamun is rich in polyphenols (gallic acid, ellagic acid), flavonoids (quercetin, kaempferol), alkaloids (jambosine), tannins (ellagitannins), anthocyanins (cyanidin-3-glucoside) and terpenoids (α -pinene, β -pinene, eugenol) [21, 22].

These metabolites correlate with classical Unani functions: tannins produce Qabiz effect (astringency \rightarrow protein precipitation \rightarrow reduced intestinal fluid loss), while polyphenols support Musaffi-e-Dam through antioxidant detoxification [19, 23].

Phytochemicals of Jamun with reported radioprotective activities

4. Phytochemical Profile

S. No.	Agent	Chemopreventive effects and the mechanisms operating			
1.	Oleanolic acid	Acid inhibits the growth of ascitic tumors and enhances the recovery of hematopoietic system in irradiated mice [24]			
2.	Quercetin	Protected yeast cells from γ-radiation damage by reducing DNA damage [25]. Effective inprotecting against γ-radiation-induced DNA damage to the human peripheral blood lymphocytes <i>in vitt</i> and plasmid DNA. The protective mechanisms were mediated by the antioxidant and inhibition of lipid peroxides [Intraperitoneal administration of quercetin 100 mg·kg/kg for 3 consecutive days before and/or after irradiation prevented radiation induced DNA damage in WBC of mice. Pronounced effects were when querecetin was administered before radiation [26, 27]			
3.	Gallic acid	Inhibits radiation-induced damage to DNA and lipid peroxidation in both <i>in vitro</i> and <i>in vivo</i> conditions ^[29] .			
4.	Protects yeast cells from γ-radiation-induced damage by reducing DNA damage [30] Inhibits γ-radiation induced lipid peroxidation in a concentration-dependent manner <i>in vitro</i> [31]				

5. Pharmacological and Experimental Studies 5.1 Antidiabetic Activity

Jamun seed extracts show significant reductions in FBS, HbA1c and improved β -cell integrity in diabetic models ^[33, 34]. Mechanisms include α -amylase and α -glucosidase inhibition, insulin-mimetic effects and glycogen storage enhancement ^[35]. Clinical studies report comparable glycaemic benefit ^[36].

5.2 Antioxidant and Anti-inflammatory Effects

Polyphenolic fractions exhibit strong DPPH and ABTS radical-scavenging (IC $20 \mu g/ml$) [22]. Jamun bark attenuates carrageenan-induced paw oedema via COX and LOX pathway inhibition [37].

5.3 Hepatoprotective and Renoprotective

Hydro-alcoholic seed extracts reverse CCl-induced liver

damage and normalize ALT and AST ^[39]. Gentamicininduced nephrotoxicity was ameliorated through Nrf-2 mediated antioxidant response ^[39].

5.4 Antimicrobial, Anticancer and Cardioprotective

Ethanolic extracts inhibit *S. aureus*, *E. coli* and *C. albicans* [40]. Cytotoxic assays show apoptosis in leukaemia cells [41]. Anthocyanin-rich juice improves lipid profiles and reduces LDL [37].

6. Therapeutic Applications in Unani Formulations

Formulation	Dosage Form	Indication	Source
Safoof-e-Jamun	Powder	Ziābetus Shakarī	10
Majūn-e-Jamun	Confection	Bawāsir, Ishāl	11
Arq-e-Jamun	Distillate	Waram-e-Kabid	14
Dawā-ul-Misk Motadil	Compound tonic	Musaffi-e-Dam	6

The Unani Pharmacopoeia Committee (2012) standardised the drug profile of Jamun, confirming its acceptance across AYUSH formulations for metabolic and hepatic disorders.

7. Clinical Evidence and Human Studies

Randomised trials show Jamun seed powder (5 g BID, 3 months) significantly reduces FBS and PPBS [4, 42]. Adjunct therapy with metformin further lowers HbA1c [5].

Anthocyanin-rich juice (30 ml daily, 12 weeks) improves lipid profiles and antioxidant capacity [37]. No serious adverse effects reported.

8. Toxicity and Safety

Rodent studies show no mortality up to 2 000 mg/kg ^[39]. Long-term administration causes only mild constipation due to tannins ^[2]. Human clinical data confirm hepatic and renal safety parameters within normal limits ^[4].

9. Discussion

Jamun embodies a model drug where Unani concepts of $Miz\bar{a}j$ and Afa'l parallel modern biochemical mechanisms. The cool-dry temperament ($B\bar{a}rid$ wa $Y\bar{a}bis$) opposes the hot-moist dominance of Dam wa Balgham, thereby restoring homeostasis [43]. Tannins and polyphenols explain its $Q\bar{a}biz$ and Musaffi-e-Dam effects through astringency and free-radical neutralisation [44]. Modern insights into its antioxidant and insulin-sensitising pathways [45] scientifically validate classical observations in $Zi\bar{a}betus$ $Shakar\bar{\imath}$.

Thus, Jamun serves as a benchmark for translating Unani pharmacodynamics into evidence-based nutraceuticals and clinical interventions aligned with CCRUM and AYUSH frameworks.

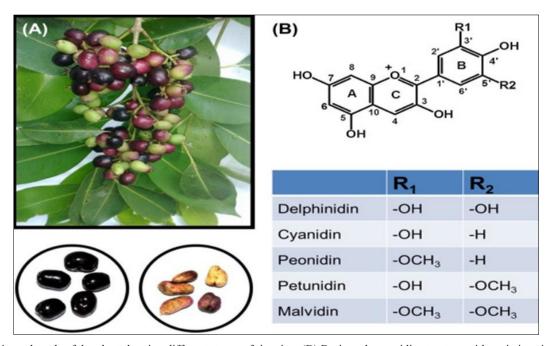


Fig 1: Fruits and seeds of the plant showing different stages of ripening. (B) Basic anthocyanidin structure with variations in R₁ and R₂ groups, illustrating major anthocyanidin types such as delphinidin, cyanidin, peonidin, petunidin, and malvidin.

10. Conclusion

Jamun (*Syzygium cumini L.*) demonstrates how traditional Unani knowledge and modern science can coexist synergistically. Its historical roles as *Qābiz*, *Musaffī-e-Dam* and *Mufattiḥ-e-Sudad* are validated by antioxidant, antidiabetic and hepatoprotective mechanisms. Standardisation of its extracts and formulations, supported by rigorous clinical evaluation, can strengthen its position as a model Unani nutraceutical for metabolic and gastrohepatic health.

11. Declaration of Conflict of Interest

No conflict of interest to declare.

Financial Support

Not available

References

- 1. Rafiq S, *et al.* Phytochemical and nutritional characterization of *Syzygium cumini* fruit pulp. J Food Sci Technol. 2017;54(8):2581-2589. https://doi.org/10.1007/s13197-017-2687-0
- 2. Najmul Ghani Khan. Makhzan al-Adwiyah. Lucknow: Munshi Nawal Kishore Press; 1920.
- Arzani A. Tibb-e-Akbar. Hyderabad: Dakan Press; 1772.
- 4. Zakharia al-Rāzī. Kitāb al-Mansūrī fi'l Ţibb. Cairo: Al-

- Maktabah al-Misriyyah; (865-925 CE).
- Ahmad R, Rahman A. Traditional uses and pharmacological potential of Jamun (*Syzygium cumini*):
 A review. J Ethnopharmacol. 2018;213:539-58. https://doi.org/10.1016/j.jep.2017.11.045
- 6. Sharma N, *et al. Syzygium cumini* seed powder improves glycemic control and antioxidant status in diabetic patients. Phytomedicine. 2020;66:153139. https://doi.org/10.1016/j.phymed.2019.153139
- 7. Khanna P, Mediratta PK, Sharma KK. Clinical evaluation of *Syzygium cumini* seed powder in type 2 diabetes. Indian J Clin Biochem. 2018;33(2):236-42. https://doi.org/10.1007/s12291-017-0693-1
- 8. Parveen N, *et al.* Synergistic effect of *Syzygium cumini* seed powder with metformin in diabetic patients: A clinical trial. J Herb Med. 2021;26:100404. https://doi.org/10.1016/j.hermed.2021.100404
- Ibn Sīnā (Avicenna). Al-Qānūn fi'l Ṭibb (The Canon of Medicine). Trans. Kantoori RH. Lucknow: Matba Nizami; 1025 CE.
- 10. Ali S, Rizvi MA. Unani pharmacological perspective of Jamun and its relevance in metabolic disorders. Hippocratic J Unani Med. 2017;12(3):55-63.
- 11. Eswarappa G, Somashekar RK. Jamun (*Syzygium cumini* L.), an underutilized fruit crop of India: An overview. Eco Env Cons. 2020;26(4):2020.
- 12. Azam Khan M. Qarābādīn-e-A'zam. Delhi: Matba Nizami Press; 1890.
- 13. Kabeer Uddin HM. Bayāz-e-Kabīr. Vol II. Delhi: CCRUM; 19th century.
- 14. Siddiqui MY, Khan A. Jamun in Unani literature: Classical analysis and therapeutic review. Indian J Unani Med. 2016;9(1):34-41.
- 15. Zohra S, Jameel M. Mizaj-e-Jamun aur Ziabetus Shakari par iske asraat. Tibb-e-Unani J. 2015;7(2):12-9.
- 16. Anonymous. Unani Pharmacopoeia of India. New Delhi: CCRUM, Ministry of AYUSH; 2008.
- 17. Sagrawat H, Mann A, Kharya M. Pharmacological potential of *Eugenia jambolana*: A review. Pharmacogenesis Magazine. 2006;2:96-104.
- Rastogi R, Mehrotra B. Compendium of Indian Medicinal Plants. Vol 1. Lucknow: Central Drug Research Institute; 1990, p. 388-9.
- 19. Ranjan A, Jaiswal A, Raja B. Enhancement of *Syzygium cumini* active constituents by UV irradiation method. Sci Res Essays. 2011;6(12):2457-2464.
- 20. Shafi P, Rosamma M, Jamil K. Antibacterial activity of *Syzygium cumini* and Syzygium travancoricum leaf essential oils. Fitoterapia. 2002;73:414-416.
- 21. Kumar A, *et al.* Hepatoprotective effect of *Syzygium cumini* seed extract against CCl₄-induced hepatic injury in rats. J Ayurveda Integr Med. 2018;9(3):196-202. https://doi.org/10.1016/j.jaim.2017.04.006
- 22. Raza H, *et al.* HPLC analysis and pharmacological evaluation of *Syzygium cumini* seed extracts. S Afr J Bot. 2021;137:89-98. https://doi.org/10.1016/j.sajb.2020.11.018
- 23. Kulkarni P, *et al.* Antioxidant potential of polyphenolic fractions of *Syzygium cumini* fruit. Plant Foods Hum Nutr. 2021;76:76-83. https://doi.org/10.1007/s11130-021-00914-4
- Ahmad R, Rahman A. Traditional uses and pharmacological potential of Jamun (*Syzygium cumini*): A review. J Ethnopharmacol. 2018;213:539-58.

- https://doi.org/10.1016/j.jep.2017.11.045
- 25. Zafar R, Ahmed Z. *Syzygium cumini*: A review on its ethnobotany, phytochemistry and pharmacology. Phytochem Rev. 2022;21(3):455-78. https://doi.org/10.1007/s11101-022-09844-6
- Hsu H, Yang J, Lin C. Effects of oleanolic acid and ursolic acid on inhibiting tumor growth and enhancing hematopoietic recovery post-irradiation in mice. Cancer Lett. 1997;111(1):7-13.
 DOI: 10.1016/S0304-3835(96)04481-3
- 27. Nemavarkar P, Chourasia B, Pasupathy K. Evaluation of radioprotective action of compounds using *Saccharomyces cerevisiae*. J Environ Pathol Toxicol Oncol. 2004;23(2):145-51. doi:10.1615/JEnvPathToxOncol.y23.i2.70
- 28. Benkovic V, Kopjar N, Horvat D. Evaluation of radioprotective effects of propolis and quercetin on human white blood cells *in vitro*. Biol Pharm Bull. 2008;31:1778-85. DOI: 10.1248/bpb.31.1778
- 29. Benkovic V, Knezevic A, Dikic D. Radioprotective effects of propolis and quercetin in gamma-irradiated mice evaluated by alkaline comet assay. Phytomedicine. 2008;15:851-858. DOI: 10.1016/j.phymed.2008.02.010
- 30. Gandhi N, Nair C. Protection of DNA and membrane from gamma radiation-induced damage by gallic acid. Mol Cell Biochem. 2005;278(1-2):111-7. DOI: 10.1007/s11010-005-6940-1
- 31. Priyadarsini K, Khopde S, Kumar S. Free radical studies of ellagic acid: A natural phenolic antioxidant. J Agric Food Chem. 2000;50:2200-2206. DOI: 10.1021/jf011275g
- 32. Bhosle S, Huilgol N, Mishra K. Enhancement of radiation-induced oxidative stress and cytotoxicity in tumor cells by ellagic acid. Clin Chim Acta. 2005;359:89-100. doi:10.1016/j.cccn.2005.03.037
- 33. Shinde S, *et al.* Hypoglycemic activity and insulinsensitizing effect of *Syzygium cumini* in experimental diabetes. Pharmacogn Mag. 2014;Suppl 2:S377-84.
- 34. Singh R, *et al.* Protective effect of *Syzygium cumini* seed extract on pancreatic β-cells in alloxan-induced diabetic rats. BMC Complement Med Ther. 2019;19:10. https://doi.org/10.1186/s12906-018-2401-3
- 35. Anshika, Pandey RK, Singh L, Kumar S, Singh P, Pathak M, Jain S. Plant bioactive compounds and their mechanistic approaches in diabetes treatment: A review. Future J Pharm Sci. 2022;8:52.
- 36. Parveen N, *et al.* Synergistic effect of *Syzygium cumini* seed powder with metformin in diabetic patients. J Herb Med. 2021;26:100404. https://doi.org/10.1016/j.hermed.2021.100404
- 37. Das S, Dey P, Ghosh A. Cardiometabolic benefits of Jamun anthocyanins in experimental models. Nutr Res. 2019;68:20-29. https://doi.org/10.1016/j.nutres.2019.05.004
- 38. Kumar A, *et al.* Hepatoprotective effect of *Syzygium cumini* seed extract against CCl₄-induced hepatic injury in rats. J Ayurveda Integr Med. 2018;9(3):196-202. https://doi.org/10.1016/j.jaim.2017.04.006
- 39. Biswas K, Chattopadhyay I, Banerjee RK. Biological activities and medicinal properties of *Syzygium cumini*. Food Chem. 2005;101:509-528. https://doi.org/10.1016/j.foodchem.2017.05.018
- 40. Rafiq S, et al. Phytochemical and nutritional

- characterization of *Syzygium cumini* fruit pulp. J Food Sci. Technol. 2017;54(8):2581-2589. https://doi.org/10.1007/s13197-017-2687-0
- 41. Saini et al. 2022.
- 42. Zahid A, Rahmatullah M. Clinical evaluation of Jamun seed powder in glycemic regulation. Bangladesh J Pharmacol. 2018;13(1):43-50.
- 43. Zohra S, Jameel M. Mizaj-e-Jamun aur Ziabetus Shakari par iske asraat. Tibb-e-Unani J. 2015;7(2):12-9.
- 44. Zafar R, Ahmed Z. *Syzygium cumini*: A review on ethnobotany, phytochemistry and pharmacology. Phytochem Rev. 2022;21(3):455-78. https://doi.org/10.1007/s11101-022-09844-6
- 45. Sharma N, *et al. Syzygium cumini* seed powder improves glycemic control and antioxidant status in diabetic patients. Phytomedicine. 2020;66:153139. https://doi.org/10.1016/j.phymed.2019.153139

How to Cite This Article

Ahmed MW, Ahmed R, Husain S, Jamal A, Siddiqui ZA, Rehman H. *Syzygium cumini* L. (Jamun): A comprehensive review of its traditional and modern therapeutic relevance in the context of Unani medicine. International Journal of Unani and Integrative Medicine. 2025;9(3):235-239.

Creative Commons (CC) License

This is an open-access journal, and articles are distributed under the terms of the Creative Commons Attribution-Non Commercial-Share Alike 4.0 International (CC BY-NC-SA 4.0) License, which allows others to remix, tweak, and build upon the work non-commercially, as long as appropriate credit is given and the new creations are licensed under the identical terms.